
Towards Secure Distributed Trust Management on a Global Scale
An analytical approach for applying Distributed Ledgers for authorization in the IoT

Nikolaos Alexopoulos
Technische Universität Darmstadt

Darmstadt, Germany
alexopoulos@tk.tu-darmstadt.de

Sheikh Mahbub Habib
Technische Universität Darmstadt

Darmstadt, Germany
sheikh@tk.tu-darmstadt.de

Max Mühlhäuser
Technische Universität Darmstadt

Darmstadt, Germany
max@informatik.tu-darmstadt.de

ABSTRACT
Authorization, and more generally Trust Management (TM), is an
indispensable part of the correct operation of most IT systems. The
advent of the Internet of Things (IoT), with its cyber-physical and
distributed nature, creates new challenges, that existing TM systems
cannot adequately address, such as for example the need for non-
interactive exclusive access enforcement. In the meantime, a line
of thought in the research community is that Distributed Ledgers
(DLs), like the one implemented by the Ethereum blockchain, can
provide strong security guarantees for distributed access control.
However, this approach has not yet been examined in a scientific,
systematic manner, and has many pitfalls, with arguably the most
important one being scalability.

In this paper, we critically explore the shortcomings of existing
solutions for trust management in distributed networks, pinpoint
which of these shortcomings can be addressed by utilizing DLs,
and offer a conceptual design for a scalable, secure TM system. Our
design approaches the problem in three layers, namely a global, an
intermediate group or shard layer, and a local layer, corresponding
to the set of embedded devices behind an internet access point. We
view our design as a novel first step, helping the community to
produce more secure and realistic authorization solutions for the
IoT, in the near future.

CCS CONCEPTS
• Security and privacy → Access control; Distributed systems
security; • Computer systems organization → Peer-to-peer ar-
chitectures;

ACM Reference Format:
Nikolaos Alexopoulos, Sheikh Mahbub Habib, and Max Mühlhäuser. 2018.
Towards Secure Distributed Trust Management on a Global Scale: An analyt-
ical approach for applying Distributed Ledgers for authorization in the IoT.
In IoT S&P’18: ACM SIGCOMM 2018 Workshop on IoT Security and Privacy
, August 20, 2018, Budapest, Hungary. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3229565.3229569

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoT S&P’18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5905-4/18/08. . . $15.00
https://doi.org/10.1145/3229565.3229569

1 INTRODUCTION
Authorization or access control, is a traditionally indispensable part
of security, whether we think of the physical or the digital world.
In the physical world, access control is facilitated through various
means; for instance with physical keys (e.g. for apartments, cars,
etc.), paper credentials (e.g. passports for boarding a flight), or forms
of passwords (e.g. a password to open a safe). Decisions on whether
or not to delegate access to another individual are most often taken
based on trust derived from personal interaction and social/legal
structures. For example, the owner of a house, i.e. the person whose
name is on the contract, would issue credentials (physical keys)
to members of her family, or, for a limited time, to a guest who is
spending time in the house.

In the digital world, authorization is traditionally associated
with permission rights on files residing in a system (either local
or remote). The most characteristic example is the UNIX family of
operating systems 1 , which offers a variety of access control meth-
ods, like mandatory and discretionary access control (MAC and
DAC respectively) [25], access control lists (ACLs), as well as more
advanced methods like role-based access control (RBAC) [24]. In a
remote scenario, authorization is most commonly achieved through
centralized services, like X.509 certificates [12] and Kerberos [21].
The need for distributed authentication and authorization gave
birth to the notion of Trust Management [4, 5], which paved the
way for distributed, generalized and abstract trust inference systems
that can implement policies adaptively, according to the intentions
of the party holding the resource under question.

The emergence of distributed networks of embedded devices
(coined as the “Internet of Things” (IoT)) that can offer digital,
as well as physical services, generates new challenges for trust
management. Traditional schemes, even decentralized, as the ones
introduced above, suffer from several shortcomings: (a) they cannot
implement complex policies in non-interactive (IoT) environments
(e.g. exclusive access delegation - ONLY U1 CAN ACCESS D1, elective
access delegation - ACCESS ONLY 1 OF {D1,D2,D3}) (b) they do
not incorporate incentives for good behaviour, (c) they do not take
past experiences into account when making decisions (whether or
not to grant access or issue delegation credentials), (d) they cannot
guarantee the transparency of “negative” trust information (e.g.
revocations, negative experiences), thus they cannot implement
“negative” rules (e.g. ALLOW IF A AND (NOT B)), (e) they are not
designed for embedded devices, and thus do not consider context in
rule specification (e.g. ALLOW IF DEVICE A IS NEAR DEVICE B),
and (f) they cannot implement time-limited rules, (e.g. ALLOW IF
T1<t<T2), or they assume some kind of global clock.

1For a more complete view of authorization in UNIX, we refer the reader to [9].

1

49

https://doi.org/10.1145/3229565.3229569
https://doi.org/10.1145/3229565.3229569
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3229565.3229569&domain=pdf&date_stamp=2018-08-07

IoT S&P’18, August 20, 2018, Budapest, Hungary Nikolaos Alexopoulos, Sheikh Mahbub Habib, and Max Mühlhäuser

To address the shortcomings of current trust management sys-
tems, new, more powerful techniques need to be developed and
applied. On a higher level, the ultimate goal would be to simu-
late a trusted third party (TTP) through a distributed mechanism,
and therefore be able to enforce arbitrary policies, rules, penalties,
etc. Distributed ledgers (DLs), such as the ones implemented by
blockchain technology (see section 2.1) intuitively fit our scenario,
as they can simulate a TTP (under well-defined security assump-
tions) by using consensus algorithms. Specifically, decentralized
platforms such as Ethereum [29], that can run arbitrary (Turing-
complete) programs (smart contracts) in a secure manner, can be
used to address various of the shortcomings presented above, and
under well-defined assumptions guarantee provably secure proper-
ties. Additionally, due to their use in cryptocurrency implementa-
tions, they can seamlessly authorization delegations with related
financial transactions (e.g. pay for using a car, an internet access
point or reading data from a sensor). However, due to the overhead
incurred by the operation of DLs, it is of vital importance to rec-
ognize exactly for what operations, reliance on a DL is necessary.
Moreover, the scalability of the mechanisms is, arguably, the most
serious limitation of the design space, as the number of embedded
devices that would potentially be handled by the system is huge.
Therefore, the system should be “scale-out”, meaning that the intro-
duction of new parties/devices in the system should have negligible
effect on the complexity of each operation.

Contributions:
In this paper, we critically explore the design of a distributed trust
management system that can scale to global dimensions. We begin
by presenting a straw-man design that can be used to study the
advantages of using DLs as a part of a trust management system,
as well as critically discern scenarios when DLs do not offer size-
able security benefits, and may even incur negative consequences
like time delays and transaction fees. Then, towards scalable and
secure trust management on a global scale, we propose a hybrid
design, following a 3-layer architecture. By hybrid, we mean that
access delegations and trust assessments can be exchanged both
in a simple peer-to-peer (P2P) way, as well as through a DL. To
achieve scalability and reduce unnecessary overhead, we dissect
the problem into 3 layers:

• (Layer2) Global: Security of operations among members of
different clusters/shards of Layer1 (see next point) is guar-
anteed by using a global public DL, such as Ethereum, and
encoding access control logic in it.

• (Layer1) Shards: Shards are groups of internet access points,
which interact often with each other. Can be thought of as
the “city” level. Traditional Byzantine fault tolerant algo-
rithms [7] can be used to construct a DL, as e.g. implemented
by Hyperledger Fabric[6].

• (Layer0) Local: Embedded (or not) devices and users behind
a single internet access point (router). Access points can be
considered honest (trusted), semi-honest (privacy threat), or
malicious (actively attempts to manipulate access decisions).
They have access to both upper layers.

Finally, we articulate the challenges faced at each layer that the
community should overcome in order to produce practical and
secure trust management systems for cyber-physical environments.

2 BACKGROUND AND RELATEDWORK
In this section we present a brief overview of distributed ledgers
and a summary of the related work in the field of trust management.

2.1 Distributed ledgers and smart contracts
A Distributed Ledger (DL) can be thought of as a data file (a ledger
- book) that is replicated among a number of peers. The contents of
the file and their modifications are agreed upon by the peers via
consensus algorithms. Although the problem of consensus in open
networks (unknown number of participants) is known to be impos-
sible to solve, blockchain technology, as introduced by Bitcoin [20]
in 2008, provided a breakthrough by using proof-of-work (racing for
the solution of a difficult puzzle) to achieve (probabilistic) consen-
sus even in open networks. More recently, proof-of-stake designs
(e.g. [11, 16]) have paved the way for consensus in open networks
without the necessity of energy waste as a result of proof-of-work.

At first, the ability to achieve consensus in open networks was
utilized to create decentralized digital currencies, like Bitcoin and
the numerous alt-coins that exist. However, Ethereum [29] intro-
duced the possibility of storing Turing-complete code (smart con-
tracts) on the ledger, that can change the state of other variables
stored on it, and the correct execution of which is guaranteed based
on the ledger’s consensus properties. Peers can deploy or call func-
tions stored on the DL and change the state of the DL in a consistent
manner (maintaining consensus), i.e. all honest participants have
the same view of a certain snapshot of the ledger (the state at time
t) with overwhelming probability as time passes.

In public distributed ledgers, like Bitcoin and Ethereum, nodes
who participate in the consensus algorithm are called miners, and
are the ones guaranteeing the consensus properties of the ledger.
In order to incentivize miners to invest computational resources,
cryptocurrency fees need to be paid by parties who want to modify
the ledger. In Ethereum, these fees are called gas, and they depend
on the computational and space complexity of the smart contract to
be executed. Other nodes running the full version of the protocol,
but which do not participate in the consensus process, are known
as full validating nodes. Although they don’t have the ability to
make changes to the ledger, they can monitor it and validate that
the changes made are in accordance with the rules of the protocol.
Nodes who cannot (due to limited computational or network re-
sources), or do not want to inspect and validate every change that
occurs in the ledger, but want to know specific parts of the state,
are known as light clients. The security of light clients, i.e. their
assurance that the state they observe is indeed the global state, is
weaker than the full security guarantees of full validating nodes.
However, efficient algorithms exist (e.g. [27]) that offer them sub-
stantial security guarantees with a need for limited communication
with full validating nodes.

The developments in achieving consensus in open/public net-
works rekindled the interest of the community on achieving con-
sensus in permissioned networks (peers known and authenticated)
by using Byzantine fault tolerant algorithms, e.g. [7]. Hyperledger
Fabric [6] is an example of a framework implementing a DL in
a permissioned environment. It supports Turing-complete smart
contracts (as Ethereum) and follows an architecture where mod-
ules and algorithms (e.g. consensus algorithm used) can be easily

2

50

Towards Secure Distributed Trust Management on a Global Scale IoT S&P’18, August 20, 2018, Budapest, Hungary

interchanged. Permissioned DLs can support an order of magni-
tude fewer peers participating in the consensus protocol, compared
to public DLs, but offer considerably higher throughput of state
transitions.

2.2 Related work
There are many cryptographic authentication and authorization
systems proposed in literature. Here we succinctly review some
historical widely used representatives and some modern proposed
approaches employing DLs.

Traditional trust management systems: Today, digital authen-
tication (and as an extension authorization) is performed primarily
through X.509 certificates [12] issued by trusted certification au-
thorities (CAs), therefore the infrastructure is centralized. Another
centralized authorization mechanism is the Kerberos protocol [21]
which employs symmetric key cryptography and requires a trusted
third party. There also exist a variety of decentralized authenti-
cation and authorization systems, like the well known PGP web
of trust [30], Blaze et al.’s Decentralized Trust Management sys-
tems [4, 5], SD3 [13] a trust management system with proofs of
correct answers (decision corresponds to the specified security pol-
icy), and SPKI/SDSI [8, 23] which uses access control lists and does
not require CAs. Systems for experience based trust calculation
generally follow either the eigenvalue approach of Eigentrust [15],
or the trust chain approach of [14] or [22]. A system that uses
reputation to make access control decisions is presented in [26].

DLs in authentication/authorization: There is a good amount
of recent work on utilizing DLs to construct more secure systems
or bring transparency to existing ones. First, the conceptual advan-
tages of using DLs for authentication are explored in [1]. The idea of
a decentralized public key infrastructure (PKI) based on blockchain
technology is presented in [10], and a more mature design, in the
form of ClaimChains [17] can be deployed in various forms and
offers enhanced privacy guarantees. Furthermore, Blockstack [2]
offers a global naming and storage system based on the Bitcoin
blockchain, while Matsumoto et al. created IKP [19], a system that
uses Ethereum smart contracts to penalize misbehaving CAs. Fi-
nally, WAVE [3] is a smart contract-based authorization system for
the IoT that stores access delegations in the Ethereum blockchain.

3 A STRAW-MAN SOLUTION
In this section we present an educational example of a secure trust
management system which will serve as the basis for our explo-
ration.

Environment. As seen in Fig. 1, our environment consists of the
following entities, each of which is characterized by a public-private
key-pair:

- Miners: These nodes run the consensus algorithm and exe-
cute all smart contracts, in order to generate a global and
correct view of the state of the system. They are assumed to
be constantly connected to the internet and have adequate
processing power to run the smart contract code and, in the
case of Proof-of-Work consensus algorithms, contribute to
the network’s processing power. They are incentivized to

invest resources by receiving cryptocurrency fees that are
attached to the smart contracts.

- Internet Access Points (IAP): Devices connected to internet
which act as routers for other embedded devices. They can
also act as full validating nodes of the distributed ledger.

- Embedded (smart) devices: The subject of our authorization
problem. These are things with limited computational re-
sources, and additionally volatile internet connectivity be-
haviour. They depend on the IAPs to communicate. Addi-
tionally, they are assumed tamper-resistant, and they have
been initialized with knowledge of the public key(s) of their
owners, i.e. the public keys that are trusted by the device to
issue delegation of access credential to other public keys.

- Users: Users can access the internet on demand (e.g. through
their 4G smartphone devices). They are the ones deciding
on, and issuing delegation of access credentials.

Bob

Alice
2) signsk_Alice(pkBob, pkLock)

3) check_access

1) request_access

Figure 1: Our straw-man solution2

An example. In Figure 1, we see the general idea of an access
delegation by Alice to Bob, in order for the latter to use a smart
lock, to access Alice’s garage for rent. Initially, Bob requests access
to the smart lock fromAlice, who is the owner of the lock. Alice then
decides on whether or not to issue an access delegation credential
to Bob’s public key pkBob . The decision can be facilitated, either by
personal interaction, i.e. Alice knows Bob and they have exchanged
public keys through a different channel, or by querying the DL for
the reputation score of pkBob , derived through past experiences of
other users with Bob. After Alice decided to allow access to Bob, she
sends an access control delegation, as a transaction, signed by her
public key to the DL. This transaction can also demand a monetary
fee in cryptocurrency to be paid by Bob, to an address associated
with the delegation. Afterwards, Bob presents the address of the
delegation in the DL to the system of the lock. The latter inspects
the DL and assures that the delegation exists, has not been revoked,
and Bob has paid the required fee to the designated address, thus
allowing access to Bob, who presents his public key to the lock via
a short-range communication channel (e.g. Bluetooth).
Discussion of the design. The design presented in this section
is based on the property that all access delegations are stored in
2Design contributors acknowledgement [18]

3

51

IoT S&P’18, August 20, 2018, Budapest, Hungary Nikolaos Alexopoulos, Sheikh Mahbub Habib, and Max Mühlhäuser

a global distributed ledger. This design offers some interesting
security properties, addressing the shortcomings of traditional trust
management systems. In more detail:

(1) Complex policies, like exclusive access control can be im-
plemented by delegation logic encoded in smart contracts.
For example, to assure Bob that he is the only one with
access delegation rights to the lock, delegation rules that
guarantee that two overlapping delegations of the form
siдnsk_Alice (pkBob ,pkLock), siдnsk_Alice (pkCharlie ,pkLock)
will be accepted as valid and added to the DL. This is the
equivalent of protection against the double spending attack3
against decentralized cryptocurrencies.

(2) A reputation score for each public key is maintained, and
therefore a source of experience-based trust when there is
no personal interaction between users.

(3) Due to the global state made available by the DL, “negative”
trust evidence, like negative reputation ratings and blacklist-
ing rules of the form: allow access to everyone except Bob,
can be securely implemented, without the need for interac-
tion between the embedded device (which may be offline)
and its owner.

(4) Time-limiting rules of access can be implemented without
the need of a system-external trusted global clock, by lever-
aging the updating (block creation) process of the DL. For
example, a delegation can be valid until a chain of x state
updates (new blocks) have become visible to the network.
In Bitcoin, for example, the protocol enforces (through PoW
difficulty adjustment) an average time between mined blocks
of 10 minutes.

(5) Financial incentives and penalties can be applied natively. For
example, Alice can request that Bob makes a safety deposit,
unlockable by a set of arbiters. The arbiters can be chosen
by their reputation score and their physical proximity to the
embedded device in question. In the case that Bob damages
the device, he will be liable to lose his deposit.

Why this cannot work. However attractive a design like the one
described above can be, there are serious technical considerations
that render it unrealizable. First and foremost, the design is unscal-
able. All delegations have to be included in the DL and processed
by the miners. With a large number of delegations, this will over-
load the network. Here it is worth noting two things: (a) not all
delegations may require the strict guarantees provided by a DL,
and (b) the time delay between the issuance of a delegation, and its
definite inclusion in the DL may not be tolerable in some scenarios.
Apart from this, there are security considerations as well. In the
scheme described above, devices are assumed to have access to the
state of the DL. To achieve this, all devices must have adequate
computational resources and disk storage, in order to store and
validate the complete state of the DL. This assumption is unrealistic
for embedded devices, and solutions following the direction of light
clients [28] are necessary.

3https://en.bitcoinwiki.org/wiki/Double-spending

Level 2: Global

Level 1: Shards

Level 0: Local

Figure 2: A 3-layer trust management architecture

4 TOWARDS SCALABLE SECURE
AUTHORIZATION

In this section, we propose a layered architecture for trust manage-
ment, as seen in Figure 2, and proceed to analyze choices and con-
siderations in each layer, with an emphasis on important problems
that still need to be solved, and directions towards their solution.

4.1 Layer2: Global Layer
The global layer represents the backbone of the system. It consists
of miners maintaining a global, public DL, and it can be instantiated
upon existing DLs, like Ethereum. Miners are incentivized to invest
computational power with fees paid for each operation on the DL.
This global DL gives us the power to enforce strong consistency
guarantees for access delegations between devices and users who
belong to different Layer1 shards. However, each operation on the
Layer2 DL incurs a non-negligible cost w.r.t. fees that need to be
paid to the miners. Apart from that, employing state-of-the art
consensus algorithms, like Proof-of-Stake (which is in the roadmap
of the Ethereum foundation), will remove the need for wasteful,
unfair4 and environmentally unfriendly PoW mining.

One of the basic functionality of the global layer is to keep track
of the public keys of entities (users and devices) participating in
the system, and the unique shard (see below) that they belong to,
thus providing a prerequisite for the security properties achieved
by our straw-man design.

4.2 Layer1: Shards Layer
Each shard or group belonging to Layer1 corresponds to a “smaller”
DL that provides the logic for governing a specific subset of em-
bedded devices and users (generally public keys). Conceptually, we
envision this layer to correspond to a geographical “neighbour-
hood”, like a city, or a state. Each device belongs to a unique shard
at any given time, and this strong global guarantee is enforced by

4Proof-of-Work mining is not fair, considering that big initial investments are required
to buy and set up mining “farms”, and therefore the process is not open for regular
users. In other words, the “voting power” of an individual scales exponentially rather
than linearly with her investment.

4

52

Towards Secure Distributed Trust Management on a Global Scale IoT S&P’18, August 20, 2018, Budapest, Hungary

maintaining a record of all public keys of devices that belong in each
shard, on the Layer2 global ledger. On this layer, access delegations
and reputation scores for entities (devices and users) subscribed
to the shard are maintained. This means that the operation vol-
ume of the DL of Layer2 is, on the one hand considerable, and on
the other hand affects only a part of the network. Therefore, to
achieve consensus in this layer, permissioned DLs, employing BFT
consensus algorithms are a good match. The election of the consen-
sus participants, and their incentives for validating the contents of
the DL and enforcing strong security guarantees, is a matter often
overlooked in the permissioned blockchain literature. Members
of the consensus group (their number is envisioned to be in the
tens) can be initially randomly selected by facilitating the global
DL for a bootstrapping phase, and then, they can be elected in well-
defined terms based on in-system factors, such as their reputation
in the system. To provide incentives to the users to participate in a
consensus group, members of this group will be allocated a “com-
pensation”, in the form of a small extra fee on Layer2 transactions.
The compensation will be provided at the end of their term, and
will depend on the number of devices currently subscribed in their
shard.

The access control process between parties and devices belong-
ing to the same shard follows the logic of the straw-man design,
presented above. However, operations concerning entities belong-
ing to different shards may require the use of the global DL, in order
to enforce policies that require access to the state of other shards.

4.3 Layer0: Local Layer
Local layer instances correspond to sets of devices in proximity. To
define proximity, we assume that devices belonging to the same
instance access the internet through the same access point; that is, a
Layer0 instance comprises a single internet access point, and a set of
embedded devices connected to it. This definition is not restrictive,
as devices can freely move between access points, and is used for
presentation purposes. Devices of this layer are not assumed to be
constantly reachable through the internet, and generally possess
limited computational resources. As a result, they depend on access
points for contact with the upper layers. As a first step, we can
assume an honest access point that is a full validating node of
both the Layer1 DL it belongs to, and offers light client services
to requesting devices. However, the trustworthiness of the access
point is crucial for the security of the scheme, and monitoring
mechanisms should be employed by the embedded devices, in order
to assure that the access point is relaying information honestly. Each
embedded device is concerned with entries of the DL concerning its
public key, and according to the specified policy, decides whether
or not to accept an access request.

Another aspect that has to be taken into account, and can be
included in the specification of access control policies, is context.
Specifically, embedded devices that are equipped with sensors, can
sense various properties of their surroundings, like temperature,
location, or whether or not they are in proximity with other devices,
and restrict (or facilitate) access based on this information. For ex-
ample, a policy for allowing access to a rental car with geographical
restrictions (e.g. only drive in the city) can be enforced.

4.4 Hybrid authorization - delegation types
As mentioned before, not all trust delegations may require the strict
security guarantees provided by including the delegation in the
DL. In our architecture, we allow both on-ledger, and off-ledger
delegations. For example, Alice can issue and send to Bob access
credentials that would allow Bob to access a device D. Then, upon
being presented the credentials by Bob, the device will first consider
the state of the DL (e.g. if another user has exclusive access to the
device during the time window under question), and then enforce
its policy to allow access to Bob. The possibility of off-ledger delega-
tions, when there is no need for global view guarantees, decreases
the load of the ledger and allows flexible trust management. On
the other hand, delegation types and policies that require global
view of the state, in order to be enforced, e.g. exclusive access, or
access revocation, can only be granted on the ledger. In the end, it
depends on the policy specification of each device, whether or not
access can be granted through off-ledger credentials.

4.5 Experience-based trust
As recounted in previous sections, the need for experience-derived
information (commonly referred to as reputation), both when enti-
ties decide whether or not to request access to a resource (the usual
case), but also when the entity with the capability to delegate access
to a resource, or the resource (device) itself, decides on whether or
not to do proceed. In this aspect, it may be important to consider
own past experiences, and also past experiences of other entities,
concerning the behavior of the concerned party. Traditional de-
centralized reputation systems, as well as flow-based decentralized
reputation systems, like Eigentrust are either susceptible to a single
point of failure, or cannot handle negative evidence and bad net-
work connectivity. Therefore, we propose to incorporate ratings by
the interacting parties, as a part of the access delegation process
that is achieved through the DL. This trust evidence (in the form of
ratings), can then be leveraged by mathematically tools, known in
literature as computational trust models, that offer more informative
representations of trust, compared to the simple average ratings
offered by traditional reputation systems. For example, Subjective
Logic [14] and CertainTrust [22] are two probabilistic models that
can process evidence and output expectations regarding the trust-
worthiness of entities, taking into account uncertainty and conflict
in the provided evidence.

5 DISCUSSION AND RESEARCH DIRECTIONS
In this paper, we revisited the problem of distributed trust man-
agement, this time in light of the IoT, Due to its scale, autonomous
nature, and the connectivity and resource restrictions of embed-
ded devices, the IoT poses new challenges for authorization. We
discussed limitations of existing TM systems, and how some of
these can be overcome by utilizing DLs, which can to some extent
simulate a TTP, through consensus algorithms.

As a first step in our line of thought, we presented a simple archi-
tecture, where all access delegations, as well as the reputation scores
of all participants are maintained in a DL, such as Ethereum. We
documented the advantages of this design, for instance that it can
handle exclusive access policies, time limiting rules, and “negative”
trust evidence in a transparent manner. However, our proposed

5

53

IoT S&P’18, August 20, 2018, Budapest, Hungary Nikolaos Alexopoulos, Sheikh Mahbub Habib, and Max Mühlhäuser

design also suffers from some issues that restrict its applicability to
real world scenarios. First and foremost, the design cannot scale to
global dimensions, due to the load put on the DL, which has to keep
the global state of all access delegations concerning all devices that
take part in the system. Furthermore, the inherent overhead and
time delay of encoding access delegation on a DL, is not always
necessary. There are a lot of situations, where the access policies of
embedded devices do not require global knowledge of the state of
the network.

Towards a scalable solution that retains very strong security
guarantees, we propose a “sharding of authorization domains” ap-
proach, where devices and users belong to at most one shard at
any given time (a property enforced by a global DL), and the ac-
cess delegations concerning devices belonging to a given shard,
are maintained by a dedicated, premissioned DL. We partitioned
the design space into 3 layers, namely a global, a shards, and a
local layer, and described how devices are organized in these layers.
Moreover, we supported the necessity to follow a hybrid approach,
with the possibility to issue and exchange delegations both on and
off the DL. We also highlighted the importance of experience-based
trust, as a basis for decision-making, and how experience-based
trust can be handled in a secure and actionable way.

Although we believe that our design is a good step towards scal-
able and secure TM, there are multiple challenges that need to be
addressed, some of which are documented below:
– The management of delegations concerning users and devices
registered in different shards, should be handled in a secure and
scalable manner, taking into account the technical progress of the
community in the related field of blockchain sharding.
– The election and formation of the consensus core of the per-
missioned DLs for each shard should be achieved in a way that
distributes trust among participants as much as possible, and is
resilient to attacks.
– A way of automatic translation of access policies is required, that
translates access policies given in some specification language, to a
representation that specifies what part of the trust evidence can be
provided upon request, and which are included in the DL.
– The trustworthiness of the internet access point should be consid-
ered, and ways for the devices to collectively monitor and validate
that it provides them with the correct and up-to-date state of the
DLs should be developed.
– The incentives of the participants and the business model of the
design should be explored, e.g. through game-theoretic techniques.
– The tamper-resistance of embedded devices is an assumption of
our design, however the issue is of great importance on its own.
– The practical question of how to present credentials and interact
with devices, from a usability perspective is a very important one
on its own. One possible solution, would be to use handheld devices
of users to manage their keys. This opens up a number of issues
regarding key management, revocation etc. that are known to the
security community, however they have not been addressed yet to
the necessary extent.

To sum up, in this paper we presented an approach towards scal-
able and secure trust management on a global scale, and recounted
inherent challenges towards its implementation. We believe that
our sketched proposal is a good step for the community to critically
examine and evolve.

ACKNOWLEDGEMENTS
This work has been co-funded by the DFG as part of project S1
within the CRC 1119 CROSSING.

REFERENCES
[1] Nikolaos Alexopoulos, Jörg Daubert, Max Mühlhäuser, and Sheikh Mahbub

Habib. 2017. Beyond the Hype: On Using Blockchains in Trust Management for
Authentication. In Trustcom/BigDataSE/ICESS, 2017 IEEE. IEEE, 546–553.

[2] Muneeb Ali, Jude C Nelson, Ryan Shea, andMichael J Freedman. 2016. Blockstack:
A Global Naming and Storage System Secured by Blockchains.. In USENIX Annual
Technical Conference. 181–194.

[3] Michael P Andersen, John Kolb, Kaifei Chen, Gabriel Fierro, David E Culler, and
Raluca Ada Popa. 2017. WAVE: A decentralised authorization system for IoT via
blockchain smart contracts. Technical Report. https://www2.eecs.berkeley.edu/
Pubs/TechRpts/2017/EECS-2017-234.pdf

[4] Matt Blaze, Joan Feigenbaum, and Jack Lacy. 1996. Decentralized trust manage-
ment. In Security and Privacy (SP), 1996 IEEE Symposium on. IEEE, 164–173.

[5] Matt Blaze and Angelos D Keromytis. 1999. The KeyNote trust-management
system version 2. (1999).

[6] Christian Cachin. 2016. Architecture of the Hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers.

[7] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In
OSDI, Vol. 99. 173–186.

[8] Carl M Ellison. 2011. SPKI. In Encyclopedia of Cryptography and Security. Springer,
1243–1245.

[9] Aeleen Frisch. 2002. Essential system administration: Tools and techniques for
linux and unix administration. " O’Reilly Media, Inc.".

[10] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. 2014. A Decentral-
ized Public Key Infrastructure with Identity Retention. (2014).

[11] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[12] Russell Housley, Warwick Ford, William Polk, and David Solo. 1998. Internet X.
509 public key infrastructure certificate and CRL profile. Technical Report.

[13] Trevor Jim. 2001. SD3: A trust management system with certified evaluation. In
Security and Privacy (SP), 2001 IEEE Symposium on. IEEE, 106–115.

[14] Audun Jøsang. 2001. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 9, 03 (2001), 279–311.

[15] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. 2003. The
eigentrust algorithm for reputation management in p2p networks. In Proceedings
of the 12th international conference on World Wide Web. ACM, 640–651.

[16] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference. Springer, 357–388.

[17] Bogdan Kulynych, Marios Isaakidis, Carmela Troncoso, and George Danezis.
2017. ClaimChain: Decentralized Public Key Infrastructure. arXiv preprint
arXiv:1707.06279 (2017).

[18] Linector, Smashicons, Najdenovski Zlatko, Pixel perfect, and Dave
Freepikand Gandy. [n. d.]. Flaticon. ([n. d.]). https://www.flaticon.com/.

[19] Stephanos Matsumoto and Raphael M Reischuk. 2017. IKP: turning a PKI around
with decentralized automated incentives. In Security and Privacy (SP), 2017 IEEE
Symposium on. IEEE, 410–426.

[20] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[21] B Clifford Neuman and Theodore Ts’o. 1994. Kerberos: An authentication service

for computer networks. IEEE Communications magazine 32, 9 (1994), 33–38.
[22] Sebastian Ries. 2007. Certain trust: a trust model for users and agents. In Pro-

ceedings of the 2007 ACM symposium on Applied computing. ACM, 1599–1604.
[23] Ronald L Rivest and Butler Lampson. 1996. SDSI-a simple distributed security

infrastructure.
[24] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.

Role-based access control models. Computer 29, 2 (1996), 38–47.
[25] Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and

practice. IEEE communications magazine 32, 9 (1994), 40–48.
[26] Vitaly Shmatikov and Carolyn Talcott. 2005. Reputation-based trust management.

Journal of Computer Security 13, 1 (2005), 167–190.
[27] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient non-equivocation

via Bitcoin. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 393–409.
[28] Ethereum wiki. 2017. Light client protocol. (2017). https://github.com/ethereum/

wiki/wiki/Light-client-protocol
[29] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper 151 (2014).
[30] Philip R Zimmermann. 1995. The official PGP user’s guide. MIT press.

6

54

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-234.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-234.pdf
https://www.flaticon.com/
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Distributed ledgers and smart contracts
	2.2 Related work

	3 A straw-man solution
	4 Towards scalable secure authorization
	4.1 Layer2: Global Layer
	4.2 Layer1: Shards Layer
	4.3 Layer0: Local Layer
	4.4 Hybrid authorization - delegation types
	4.5 Experience-based trust

	5 Discussion and research directions
	References

